

NATIONAL ENERGY TECHNOLOGY LABORATORY

A Comparative Assessment of CO2 Sequestration through Enhanced Oil Recovery and Saline Aquifer Sequestration

Tim Skone, Bob Dilmore

Office of Strategic Energy Analysis and Planning (OSEAP) National Energy Technology Laboratory (NETL), U.S. DOE

National Energy Technology Laboratory

MISSION

Advancing energy options to fuel our economy, strengthen our security and improve our environment

Oregon

Pennsylvania

West Virginia

Alternative Carbon Management Strategies

- Technology exists today to capture carbon from power plants and other industrial operations...what do you do with it?
- This study discusses two alternative carbon management strategies for storing captured carbon dioxide in geologic formations:
 - Enhanced Oil Recovery using Carbon Dioxide (CO2-EOR)
 - Saline Aquifer Sequestration
- Questions to be answered:
 - What is the storage potential in the United States?
 - What is the life cycle GHG footprint of each option?
 - What are the trade-offs in deciding on a strategy?

What is CO₂ Enhanced Oil Recovery?

CO₂ enhanced oil recovery (EOR) is the injection of CO₂ into an underground oil-bearing formation for the purpose of increasing the amount of crude oil that can be produced

- CO₂ stimulates oil production through
 - Generation of CO₂/oil miscibility
 - Swelling of crude oil
 - Lowering of oil viscosity
- CO₂ is stored through volumetric and solubility trapping
 - Products include crude oil, natural gas, natural gas liquids
- CO₂ EOR enables recovery of an extra 5-15% of original oil in place (OOIP)
 - Primary and secondary recovery produce 20-40% of OOIP

Image Source: U.S. Department of Energy. Carbon Dioxide Enhanced Oil Recovery *Untapped Domestic Energy Supply and Long Term Carbon Storage Solution* (September, 2009). Accessed January 22, 2010 from: http://www.netl.doe.gov/technologies/oil-gas/publications/EP/small_CO2_EOR_primer.pdf

NATIONAL ENERGY TECHNOLOGY LABORATORY

¹ National Energy Technology Laboratory. "Storing CO2 with Enhanced Oil Recovery." Report No. DOE/NETL-402/1312/02-07-08. NETL Contact: Lisa Phares. February 7, 2008. Accessed online 1/16/2009 from: http://www.netl.doe.gov/energy-analyses/pubs/Storing%20CO2%20w%20EOR_FINAL.pdf

² Lyons, William C. Standard Handbook of Petroleum & Natural Gas Engineering: Volume 2. Copyright 1996, Gulf Professional Publishing, Butterworth-Heinemann, Houston, Texas.

CO₂-EOR Scenario Definition

- "Historical" CO₂-EOR
 - 0.4 HCPV CO₂ is injected with water (WAG) into depleted oil reservoir
 - 1 HCPV slug of water recover a portion of injected CO₂
- "Best Practices" CO₂-EOR
 - 1.0 HCPV CO₂ WAG injection
 - No CO₂ recovered at end of flood
- High CO₂ Injection CO₂-EOR increase oil production and CO₂ sequestration
 - 1.5 HCPV CO₂ WAG injection
 - No CO₂ recovered at end of flood

Estimate of Domestic Oil Production and CO₂ Storage Potential

^{*}Economically recoverable resource based on \$70/bbl, \$45/mt CO2, 15% project IRR (before tax); reported values are scaled to estimate total domestic production based on an estimated 75% coverage by ARI Big Oil Fields Database

CO₂-EOR Production Potential in the U.S.

If produced over 50 years, 45 billion barrels is:

- 2.5 MM bbls/day
- 10X EOR production in 2008
- about 1/3 of 2009 domestic production

Life Cycle Inventory Modeling Approach: CO₂-EOR

Life Cycle Inventory Modeling Approach: CO₂-EOR

Includes Site Operation and Construction

- Site evaluation and characterization
- Construction
- Operation
- Site Closure
- Monitoring, Verification, and Accounting (MVA)

Life Cycle Inventory Data Reported

- Greenhouse gases (CO₂, CH₄, N₂O, SF₆)
 - Reported as CO₂ Equivalents, using 100-year, 2007 IPCC values
- Criteria Air Pollutants (CO, SOX, NOX, PM)
- Toxic Materials (Hg, Pb)
- Land Use
- Water use

CO₂-EOR GHG Performance (metric tonnes CO₂e / barrel of crude oil)

Marginal Performance "Best Practices" Flooding Scenario

Life Cycle Inventory GHG Results: CO₂ Enhanced Oil Recovery

CO ₂ -EOR Operational Scenario	Historical	Current Best Practices	1.5 HCPV CO ₂ WAG ^a
CO ₂ Injection Duration (single pattern, years)	7	25	36
Volume of CO ₂ Injected as a Percent of the Total Pore Volume in the Target Formation ^b	0.4	1.0	1.5
Oil Recovery as a Percent of Original Oil in Place (OOIP)	12%	17%	21%
Percent of Injected CO ₂ Recycled ^c	60%	71%	78%
Gross CO ₂ Stored per Barrel of Oil Produced (kg CO ₂ /bbl oil) ^c	195	228	211
GHG Emissions per Barrel of Oil produced (kg CO ₂ e/bbl oil) ^c	51	71	95
Net CO ₂ Stored per Barrel of Oil Produced (kg CO ₂ /bbl oil) ^c	144	157	116

- a Assumes (1) improved technologies that enable more efficient contact between CO₂ and residual oil and (2) policy incentives for sequestering CO₂.
- b Hydrocarbon pore volume (HCPV) is the pore volume in a reservoir initially filled with oil, and is often used to describe in-formation fluid volumes and discuss normalized performance between reservoirs. HCPV is calculated as $\Sigma A^*h^*\phi^*(1-Swi)$ where A = surface areas (40 acres), h = pay thickness (76 ft.), φ = porosity (0.11), and Swi = initial oil saturation as fraction (0.8).
- c Values are average over the duration of the flood.

Results derived from single injection will modeling of a 40 acre 5-spot tapered WAG injection in a typical formation in the Permian basin, using the PROPHET model.

Key Findings: CO₂-EOR

- Compared to primary and secondary recovery, CO₂
 EOR requires a large amount of energy per barrel of crude oil produced
- "Best practices" CO₂-EOR performance*:
 - gross sequestration benefit: 228 kg CO₂/bbl oil produced
 - operational emissions: 71 kg CO₂e/bbl oil produced
 - Energy consumption: 0.2 MJ per MJ oil produced

 Marginal analysis shows diminishing performance per bbl as flood progresses

Want more details?

NETL, 2010. An Assessment of Gate-to-Gate Environmental Life Cycle Performance of Water-Alternating-Gas CO2-Enhanced Oil Recovery in the Permian Basin. DOE/NETL 2010-1433

www.netl.doe.gov/energy-analyses Publication ID: 333

ØENERGY

What is Carbon Capture and Sequestration?

Capture and storage of CO₂ and other greenhouse gases that would otherwise be emitted to the atmosphere

Terrestrial Capture CO₂ absorbed from air

Terrestrial Storage

Trees, grasses, soils

Point Source Capture

- Power Plants
- Ethanol Plants
- Cement
- Steel
- Refineries
- Natural Gas Processing

Geologic Storage

- Saline formations
- Depleted oil/gas
- Unmineable coal
- •Other: basalts, shales

National Atlas Highlights

Hundreds of Years of Storage Potential

U.S. Emissions ~ 6 GT CO₂/yr all sources

2008 Conservative Resource Assessment

Oil and Gas Fields
138 GT CO₂ Storage Resource*

Unmineable Coal Seams 157-178 GT CO₂ Storage Resource*

Saline Formations 3,300–12,600 GT CO₂ Storage Resource*

Carbon Sequestration Atlas of the United States and Canada (Atlas III)

Release date: November 2010

Featuring updates:

- DOE's Carbon Sequestration Program
- DOE's International Collaborations
- DOE's National Risk Assessment Partnership (NRAP)
- Regional Carbon Sequestration Partnership (RCSP) Activities
- Refined CO₂ source estimates and CO₂ storage potential across the RCSP regions
- Worldwide CCS projects, CCS regulatory issues
- NATCARB's improved databases and GIS system

*2008 Carbon Seguestration Atlas of the United States and Canada.

Large Geological Storage Projects Underway

Each Stores > 1 Million Tonnes CO₂/yr

Montana

Sleipner Project- Norway

- CO₂ removed from natural gas produced on production platform in North Sea
- · Injection into saline reservoir under sea
- Started 1996

Weyburn – Saskatchewan

- EOR project with 50 wells
- Uses CO₂ from coal gasification plant
- Started 2000

North Dakota

Bismnrck

In Salah Gas Plant - Algeria

- Injection into saline formation downdip of gas reservoir
- Started 2004

Life Cycle Inventory Modeling Approach: Saline Aquifer Operations and Monitoring

Operations are minimal

- No pumps or other energy-consuming facilities at injection site
- No energy consumption at the injection site
- Only infrastructure at the site: pipeline and injection well

Leakage Rate and Monitoring

- Saline sequestration is not well-established infrastructure; leakage rate is uncertain
- 1%/100 year leakage rate is likely conservative (overestimate)
- Leakage rate over 1% would not be a candidate for CO₂ sequestration.

Life Cycle Inventory GHG Results: Saline Aquifer Sequestration

- 10 kg CO₂e/tonne CO₂ Delivered
- 10.1 kg CO₂e/tonne CO₂ Sequestered

Emissions from site characterization, MVA, and site closure are insignificant compared to the conservative estimate of 1% leakage over 100 years of storage.

CO₂-EOR vs. Saline Aquifer Sequestration What are the trade-offs?

Characteristic	CO ₂ -EOR a	Saline Aquifer
U.S CO ₂ Storage Potential, net	~ 7 B tonne	3,300 – 12,600 B tonne
Domestic Oil Production Potential	45 Bbbls	0 Bbbls
Barrels of Domestic Crude Oil per Tonne CO ₂ Delivered	4.4	0
GHG Footprint, net (UNALLOCATED) (kg CO ₂ e/tonne CO ₂ sequestered)	452	10.1
GHG Footprint (UNALLOCATED) (kg CO ₂ e/tonne CO ₂ delivered)	311	10.0

a Best Practices Scenario

CO₂-EOR Allocation Challenge: Who gets credit for storing the CO₂?

- The Energy Conversion Facility that captured the CO₂?
- The CO₂-EOR operation that stored the CO₂?
- Allocation Options to Consider:
 - Physical Property of the Co-products
 - Energy, Mass, Volume
 - Economic Value of the Co-products
 - Displacement Method
 - Displace the Average or Marginal Production of Crude Oil from the CO₂-EOR operation
 - Displace the CO₂ Captured by the Energy Conversion Facility by Naturally Sourced CO₂

Hypothetical Example:

Advanced Coal-fired Power Plant with 90% Carbon Capture

Study Properties:

Net Power Output (Busbar): 556 MWh

Cradle-to-Busbar GHG Emissions:
 213 kg CO₂e/MWh

• CO₂ Captured: 1,060 kg CO₂/MWh

• CO₂-EOR, Crude Oil Production: 4.7 bbls/MWh

• CO₂-EOR GHG Emissions: 330 kg CO₂e/MWh

Allocation Method		Electricity (kg CO₂e/MWh)	Crude Oil (kg CO ₂ e/bbl)
Unallocated Results [T	otal: 543 kg CO ₂ e/MWh]	213	71
Energy, HHV		61	103
Economic Value	[\$0.16/kWh, \$85/bbl]	157	83
Displacement: Crude Oil, US Average	[36 kg CO ₂ e/bbl]	375	n/a
Displacement: Crude Oil, Marginal, Heav	/y [100 kg CO ₂ e/bbl]	76	n/a
Displacement: Crude Oil, Marginal, Light	[20 kg CO ₂ e/bbl]	450	n/a
Displacement: Natural Sourced CO ₂	[0.01 kg CO ₂ e/kg CO ₂]	202	n/a

Alternative Carbon Management Strategies have Inherent Trade-offs Between National Priorities!

Visit Our Websites

Office of Fossil Energy www.fe.doe.gov

NETL www.netl.doe.gov

Timothy Skone

Lead General Engineer OSEAP - Planning Team (412) 386-4495 timothy.skone@netl.doe.gov

Robert Dilmore

General Engineer Office of Research & Development (304) 285-4309 robert.james @netl.doe.gov

Phil DiPietro

General Engineer OSEAP - Analysis Team (412) 386-5853 joseph.dipietro@netl.doe.gov